

DEPARTMENT OF PRIMARY INDUSTRY AND FISHERIES

PLANT INDUSTRIES PLANT

Mangoes – a conditional nonhost for fruit flies?

Investigating the potential for new market access protocols that do not rely on post-harvest treatments

Austin McLennan, Senior Entomologist, Katherine Research Station - 27 May 2015

PLANT INDUSTRIES PLANT

Steps in the logistics of Mango

Process	Time Interval
Harvest, hold and cool fruit	Day 1
Package fruit	Day 2
Cool fruit to 14 ⁰ C	Day 3
Transport fruit to Disinfestation Facility	Day 8
Disinfestation process	Day 10
Sea freight to China at 14° C	Day 31
Ripening on arrival	Day 35
Distribution to supermarket	Day 36.

Steps in the logistics of Mango

Process	Time Interval
Harvest, hold and cool fruit	Day 1
Package fruit	Day 2
Cool fruit to 14 ⁰ C	Day 3
Transport fruit to Disinfestation Facility	Day 8
Disinfestation process	Day 10
Sea freight to China at 14 ⁰ C	Day 31
Ripening on arrival	Day 35
Distribution to supermarket	Day 36.

DEPARTMENT OF PRIMARY INDUSTRY AND FISHERIES

Post-harvest disinfestation

"Default to Transparency"

Relevance to current fruit fly protocols..

The first thing...

DEPARTMENT OF PRIMARY INDUSTRY AND FISHERIES

Disinfestation – the issues

- Expensive
- Can reduce fruit quality
- Chemical treatments are under review
- Restrictions on market access
- OH&S issues
- Consumer

The Big Question: Is it even necessary?

What if....

- What if you could...
- Get rid of dimethoate and fenthion from your packing sheds?
- Get rid of the need for fumigation, VHT or irradiation treatments to reach export markets?
- Deliver untreated premium quality mangoes to the consumer with even less chance of fruit fly detection than the current system?

Systems approach: overview

DEPARTMENT OF PRIMARY INDUSTRY AND FISHERIES

Systems Approach for Market Access

- Requires understanding of:
 - Fruit fly abundance in the current production system
 - Host status of hard mature fruit
 - Impact of quality control procedures to prevent 'at risk' untreated fruit from entering the supply chain.
 - Ability to further suppress fruit fly populations through area-wide management tactics

The mango advantage?

Northern Territory Government

"a conditional non-host?"

Summary: Host status investigations

- 1. Large scale collections of commercially-harvested untreated fruit
 - Exposed to natural field populations of pest fruit flies
- 2. Experimental collections of progressively maturing fruit
 - Exposed to natural field populations of pest fruit flies
- 3. Cage studies 2014 species and variety comparisons NEW
 - Exposed to extreme levels of pest fruit flies in a non-choice situation

Snapshot: fruit assessments

2. Commercial grading of collected fruit

3. Grading of fruit by softness at the laboratory.

4. Measuring fruit quality (dry matter, colour etc.)

5. Assessing presence/absence of fruit fly larvae – after fruit have ripened fruit for 10-12 days

1. Collections of unsprayed, commerciallyharvested fruit

Snapshot: fruit assessments 2012

DEPARTMENT OF PRIMARY INDUSTRY AND FISHERIES

Northern

Snapshot: Host status cage trials

<u>Reason:</u>

- Investigating 'Conditional non-host' status' for mangoes
- Results can be applied to all growing regions, irrespective of different regional fruit fly populations.
- Methods are logistically complex
- 2014 9 x full scale trials, Katherine and Darwin

Snapshot: Host status cage trials

Table 1. Number and details of cage trial sites

Mango cultivars	Fruit fly species tested	
	Bactrocera jarvisi	Bactrocera tryoni
KP	2 x Darwin 1 x Katherine	2 x Darwin
B74	1 x Darwin 2 x Katherine	1 x Darwin
Honeygold	2 x Katherine	
R2E2	1 x Katherine	

<u>Results overview</u>

Some fruit did have fruit fly stings and fruit flies emerging from them. These fruit:

- were from a number of different varieties
- were from orchards in Darwin and Katherine
- had dry matters (DM%) of 14.8% and higher
- were stung only by Bactrocera jarvisi

Snapshot: Host status cage trials

- 1. These were **extreme tests** under high fruit fly pressure and no choice conditions and over-represent the risks of infestation in the field.
- Under these test conditions, some hard mature mangoes were infested by *B. jarvisi*. No *B. tryoni* were reared from test fruit.
- Apparent differences were detected between varieties in susceptibility – mechanisms are not understood but could include:
 - Resin canal distribution
 - Resin pressure
 - Resin composition
 - Larval nutritional requirements / other plant defences

4. No clear relationship was established between increasing maturity and susceptibility.

5. Implications for future work and successful development of a systems approach for mangoes - *e.g. possible role for fruit fly suppression etc.*

Systems approach: Evolving focus

Good enough?

Inspection, grading, culling and packing processes

Host status of mangoes

Suppression Pilot #1: Male Annihilation Technique for *B. jarvisi*

- Almost all fruit fly detections in our studies have involved *B. jarvisi*
- Almost all recent detections in the supply chain have involved *B. jarvisi*
- Infestation levels are low but what can we do to reduce this risk even further?
- A role for suppression?
- Male Annihilation Trial

Suppression pilot: Perimeter traps

Protein-based traps: attract female fruit flies

Trapping studies: completed

Northern Territory Government

Baseline data:

Critical for evaluating the impact of pest suppression activities under systems approaches

Systems approach: The future - 2015+

Baseline trapping data

• Now monitoring only for suppression trials

Conditional non-host status investigations

• Further investigate relationship between maturity and fruit fly risk + resistance mechanisms.

Quantify specific risk-reduction tactics

- Impact of grading, packing shed practices
- MAT for *B. jarvisi*
- Perimeter trapping
- Protein bait sprays pre and post harvest
- Crop hygiene
- Host plant management

Systems approach: The future - 2015+

Consider integration with novel/additional elements – long term

- Low dose treatments?
- Impact of post-harvest handling e.g. in-transit disinfestation under Controlled Atmosphere
- SIT

Whole system evaluations at commercial scale

• Incl. discussions with trading partners, regulators

Systems Approach for Market Access

- Requires understanding of:
 - Fruit fly abundance in the current production system
 - Host status of hard mature fruit
 - Impact of quality control procedures to prevent 'at risk' untreated fruit from entering the supply chain.
 - Ability to further suppress fruit fly populations through area-wide management tactics
 - and....

Systems Approach for Market Access

- Requires understanding of:
 - Fruit fly abundance in the current production system
 - Host status of hard mature fruit
 - Impact of quality control procedures to prevent 'at risk' untreated fruit from entering the supply chain.
 - Ability to further suppress fruit fly populations through area-wide management tactics

Collaborators and Collaboration

Acknowledgements

Thanks to all grower co-operators and investors

NTMIA Katherine Growers + others Horticulture Innovation Australia NT DPIF

DEPARTMENT OF PRIMARY INDUSTRY AND FISHERIES

Commercial harvest of mangoes

Mature Firm Green

- Dry matter >14% <16.5%
- Flesh colour as per industry standard

NO defects

Class 1 Export grade

DEPARTMENT OF **PRIMARY INDUSTRY AND FISHERIES**