

Soil Carbon and Nitrogen Management in Mangoes.

Geoff Dickinson, Pat O'Farrell, Tony Pattison, Matthew Weinert, Christina Mortimore, Nikita Coleman, Paul Nelson, Kaila Ridgway, Bronwyn Masters.

Queensland Department of Agriculture & Fisheries Queensland Department of Natural Resources & Mines Northern Gulf Resource Management Group, James Cook University

Australian Government

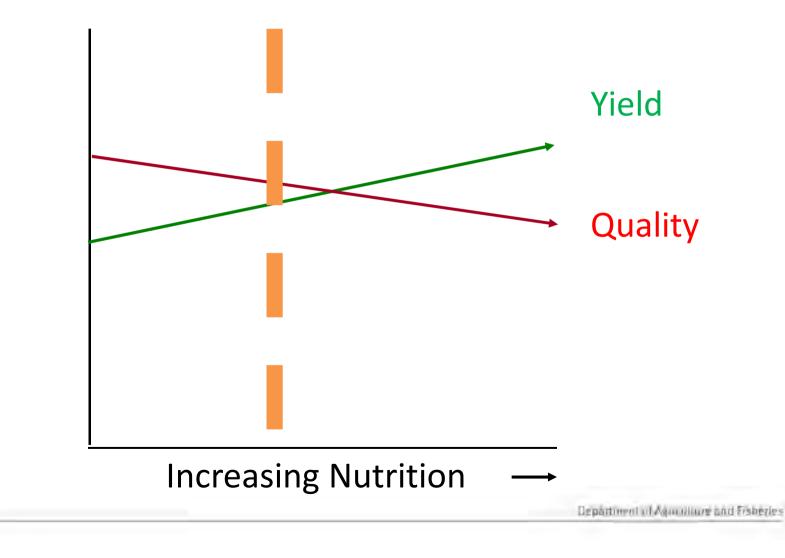
Australian Mango Soils

Soil features

- Light medium textured
- Low water holding capacity
- Low organic carbon (<1.0%)
- Low nutrient holding capacity

Management features

- Easy to manipulate nutrient and water
- Water stress to induce dormancy and stimulate flowering
- Low N levels = less fruit defects


Conventional management "Bare-earth strategy"

- Regular weed control
 - Herbicide to rows
 - Regular inter-row slashing
- Disease management
 - Removal of leaf and branch litter under trees
- Inorganic fertilisers
 - Broadcast, fertigation, foliar
- Loss of top-soil
- Depletion of soil organic matter
- Low nutrient & water-holding holding capacity

Mango industry issues

Under – productive Irregular bearing

Action-on-the-Ground Project

Improved Soil Health of Mangoes

1. Increased Soil Organic Carbon by mulching

- Nutrient holding capacity
- Water holding capacity
- Biological diversity
- Porosity and aeration
- Soil stability (less erosion)
- Buffer against climatic extremes
- Fruit yield and consistency

Action-on-the-Ground Project

Improved Soil Health of Mangoes

2. Controlled-Release Nitrogen Products

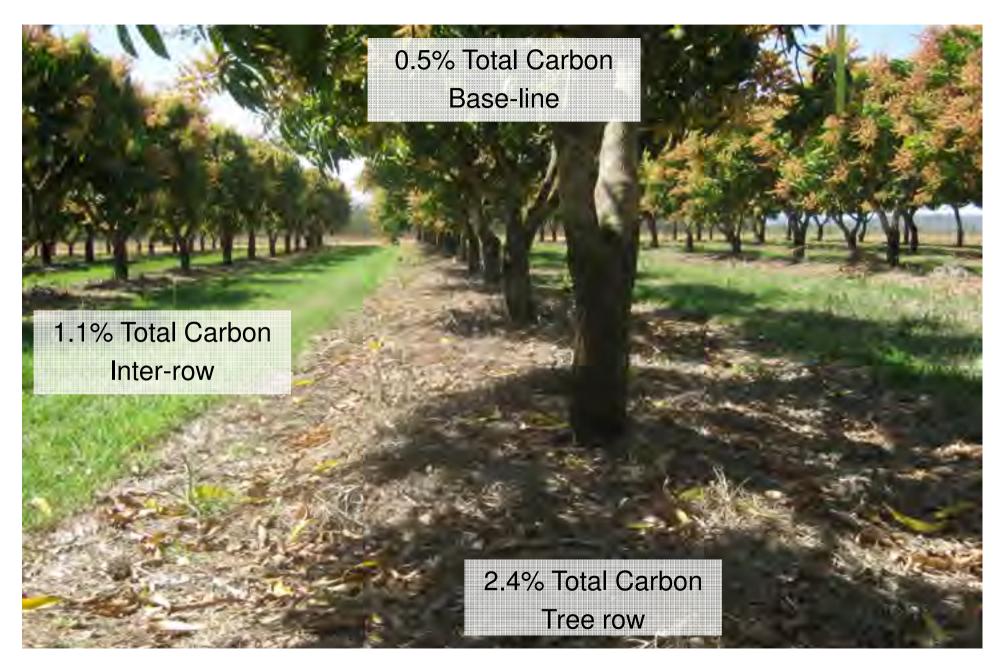
- Reduce N losses
- Increase N availability
- Improve N efficiency
- Increase fruit yield and consistency

Two Mango Orchard Trials

- Demonstration site
- Intensive experiment

Site 1. Blushing Acres – Sam & Kylie Collins, Dimbulah

Promote inter-row growth for use as mulch


Department of Agroundure and Fisherles

Site 1. Blushing Acres – Sam & Kylie Collins, Dimbulah

Side-throw slash 3-4 times, 5 tonnes mulch/year

Department of Agroundure and Fisheries

Inter-row groundcover – a haven for beneficials

- Bees
- Flies
- Lacewings
- Mantids
- Parasitic wasps
- Predatory Bugs
- Spiders

Anecdotal benefits of mulch

- Reduced herbicide use
- Reduced irrigation
- Reduced fertilisation
- Refuge for beneficial insects

High yields (Honey Gold)

• 17 T/Ha – 3 year average

No fruit quality issues

Site 2. "Samdara" – Adrian & Alfina Zugno, Mutchilba

- Conventional 'bare earth'
 management
- 0.8% Total Soil Carbon
- Intensive nutrition and soil
 moisture monitoring program
- 18T/Ha average yields (KP)

Department of Agrounding e and Fisheries

- Treatments commenced in Jan 2014
- Hay mulch applied annually
- Three nitrogen fertiliser products (at 66kg N/ha/Year)
 - Urea
 - Entec[®] Urea (+ nitrification inhibitor)
 - Agrocote[®] Urea (Controlled release fertiliser)

Hay mulch applied at 11T/Ha/Year over 3 years

Department of Agooniune and Fisheries

Mulch nutrient inputs (11 Tonnes/Ha)

Element	Mulch	Kg/Ha
Ν	0.5%	66
Р	0.2%	20
К	2.1%	230
Са	0.2%	20
Cl	0.7%	80

Department of Agooniune and Fisheries

Mango leaf nutrients analysis

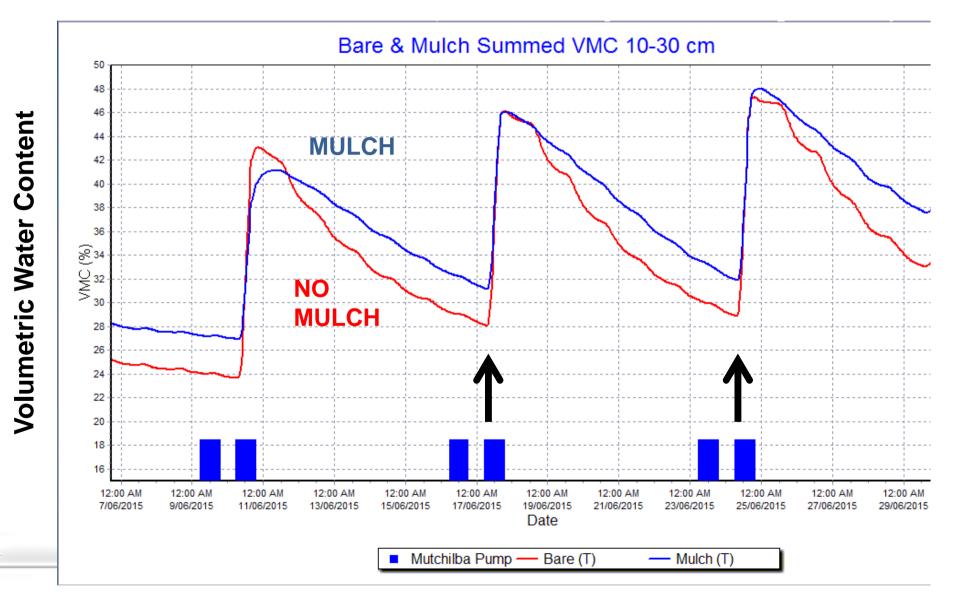
Element	No Mulch	Mulch
N	1.18%	1.21%
Р	0.16%	0.16%
К	0.86% a	1.03% b
Ca	2.7%	2.6%
Cl	0.06 a	0.08 b

Department of Agrounding and Fisherles

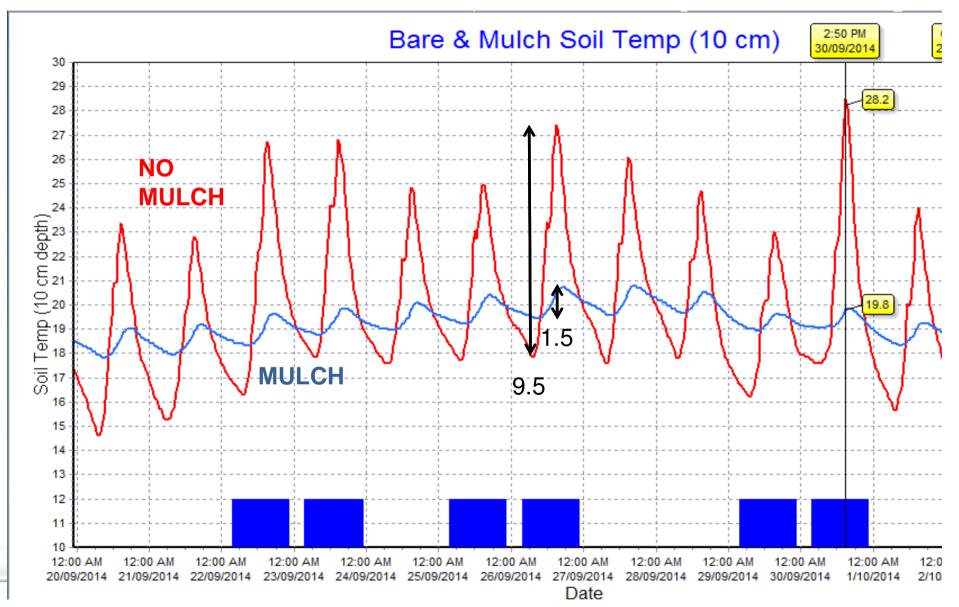
Mango phenology

Positive effects of mulch

- Canopy leaf area increased by 10%
- Root biomass (top 10cm of soil) increased by 20%.


Department of Aquantiture and Fisheries

Soil biology


- Changes within 12 months
- Greater microorganism diversity
- Large reduction in parasitic nematodes
- Large increase in detritus
 nematodes

Soil moisture

Soil temperature

-

Fruit yields/tree – 2016 season

	No Mulch	Mulch
Fruit Number	196	199
Fruit Weight	329 g a	361g b
Fruit Yield	64.4kg a	71.7kg b

Department of Aquiniture and Fisherles

Fruit quality – 2016 season

No effects on:

- Fruit blush (harvest)
- Fruit colour
- Fruit firmness
- Body rots (post harvest Scholar® hot-dip)

Small effects on:

- Body rots (non-dipped)
 - 22 days post harvest
 - Number of fruit with >5% body rots
 - 2015 season. Mulched 24%, Non-mulched 12%
 - 2016 season. Mulched 48%, Non-mulched 39%,

Effects of increasing soil organic carbon in mango orchards

Soil

- Buffering of soil temperatures
- Increased soil water holding capacity
- Increased microbial biodiversity and proportion of 'beneficial' microorganisms.

Plant

- Increased plant nutrient levels (Potassium)
- Increased plant canopy size
- Increased surface root biomass
- Increased fruit size and overall fruit yield
- Fruit quality unaffected (when fungicide dipped)

